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ABSTRACT

The TIME STRIKE munitions optimization model was introduced in 1995 for use by various US
Air Force agencies to develop requirements for conventional munitions, to refine operational plans based
on the availability of different mixes of munitions, and to assess the effects of procuring different types and
quantities of munitions. TIME STRIKE was developed under the sponsorship of HQ US Air Force, the Air
Force Studies and Analyses Agency, and HQ Air Combat Command to consolidate and extend three
existing munitions optimization models. The report covers both the formulation of the new large-scale

linear programming model and extensions to the existing models that were included in TIME STRIKE.




EXECUTIVE SUMMARY

In January 1995, three USAF agencies that had been using different optimization models to
analyze requirements for conventional aircraft munitions agreed to consolidate and extend their models.
The three models consisted of HEAVY ATTACK, operated by the HQ Air Force Deputy Chief of Staff for
Operations, Directorate of Forces (HQ USAF/XOFW); the Theater Attack Model (TAM), operated by the
Air Force Studies and Analyses Agency (AFSAA); and the MIXMASTER model, operated by HQ Air
Combat Command’s Plans and Programs Directorate (HQ ACC/XP-SAS). The agencies felt a
consolidation would advance the joint capabilities of this class of models, leverage their investment in

common databases and data management tools, and unify and reconcile their various analyses.

The USAF Office of Aerospace Studies (OAS), working under the direction of an inter-agency
working group, produced a new model called TIME STRIKE that offers a menu of user-selectable
objectives and constraints. TIME STRIKE isn’t a single model, but instead is a family of optimizations
with a common core. In each instance, TIME STRIKE decides how best to allocate aircraft sorties and
weapons to targets in a particular scenario, subject to various budget and availability constraints. However,

TIME STRIKE differs from its three ancestors in eight major areas:
* New objective functions that are oriented towards campaign goals have been added;
* Sortie and target kill accounting have been changed;
* Time periods are treated explicitly;
* Battle-damage assessment (BDA) and target regeneration have been revised;
e Weather effects have been reformulated;

¢ Operationally-oriented limitations such as minimum altitudes for weapons deliveries have

been added;
* Budget constraints have been revised and extended; and
¢ The ability to model simultaneous campaigns in two theaters has been included.

The paper describes parts of HEAVY ATTACK, TAM, and MIXMASTER where appropriate.
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I. INTRODUCTION

A. THE MUNITIONS OPTIMIZATION PROBLEM

The general problem the US Air Force faces when procuring and managing conventional aircraft
munitions is determining the best mix of weapons to hold in inventory. The desire to determine the best
inventory—along with the structure of the problem—Ied the Air Force to adopt optimization over 25 years

ago as a means to determine munitions stocks.

However, the Air Force’s experience has shown there is a more specific set of problem

definitions, with the following three covering virtually all questions a munitions optimization must answer:

o The Tradeoff Problem. What is the effect of having or not having a particular weapon in the

inventory?

e The Allocation Problem. What is the best way to allocate munitions and aircraft to targets,

given a fixed inventory and scenario?

¢ The Requirements Problem. What weapons inventories do we need to meet our warfighting

goals for a particular scenario?

Over the years the Air Force has built a series of models to address these problems, all of which
require certain fundamental inputs. First, the models need a scenario, which consists of a collection of
target types of various quantities and some measure of importance or precedence for their destruction.
Second, the models require a set of aircraft, which fly time-varying sortie rates (missions per aircraft per
day). Third, the models need data describing the effectiveness of each feasible aircraft-weapon
combination against each target type. Given this information, these models try to optimize the allocation of

aircraft and weapons into sorties against targets in accordance with some objective function.

The Air Force has a common approach to the munitions problem: use optimization to best allocate
aircraft and weapons to targets in a particular scenario. However, the objective functions and constraints of
the existing models differ significantly. There is no general agreement on what the meaning of “best” is,

nor is there much agreement on which constraints are necessary.

Before proceeding, it will be helpful to discuss the dimensions of the entities in this class of
models (Figure 1). Sorties are valid combinations of an aircraft, weapon, weapons loadout, delivery tactic

(or profile), time period, weather state, target, and target depth (or distance band). Targets are classified by




type, distribution across distance bands, and target class. Weapons are characterized by type, component
family (for weapons that share common parts), and qualification requirements (for weapons that can only

be employed by a limited proportion of aircraft or aircrews). The existing models use these dimensions in

varying degrees.
aircraft type (F-16) type (aircraft shelter)
weapon type (GBU-24 laser-guided bomb) distance distribution (40% at 100-150 NM )
loadout (2 GBU-24's) target class (airfield targets)

delivery profile (level delivery at 10,000 ft altitude)
time period (day 1-3)

weather state (12,000 ft ceiling, 5 NM visibility) type (GBU-24)
target type (aircraft shelter) component family (GBU's w/ common laser seeker)
distance band (100-150 NM from border) qualification family (aircraft with laser designators)

Figure 1. Dimensions of the primary entities in existing munitions models. The models all
use sorties, weapons, and targets, but with different levels of detail. This figure gives an example
of each dimension.

B. MODEL CONSOLIDATION

The differences among the existing models led to serious disagreements over weapons
requirements, which became harder to reconcile as the Air Force’s procurement budgets began shrinking in
1990. In January 1995, three USAF agencies that owned existing models agreed to consolidate their
optimizations into one system. The three models consisted of HEAVY ATTACK, operated by the HQ Air
Force Deputy Chief of Staff for Operations, Directorate of Forces (HQ USAF/XOFW); the Theater Attack
Model (TAM), operated by the Air Force Studies and Analyses Agency (AFSAA); and MIXMASTER,
operated by HQ Air Combat Command’s Plans and Programs Directorate (ACC/XP-SAS). The agencies
felt a consolidation would advance the capabilities of this class of models, leverage their investment in

common databases and data management tools, and provide a common framework for their analyses.

A working group gave the USAF Office of Aerospace Studies (OAS) the task of combining and
extending the three existing models. Consequently, OAS produced two variants of the same formulations.
The first set of models, collectively called QUICK STRIKE, operate as a sequence of optimizations.
QUICK STRIKE optimizes sortie allocations for a single period, and passes the output from that period to
the next period’s optimization. This time-myopic approach keeps the model small and fast, but complicates

global analyses and forces the user, rather than the model, to explicitly define how resources can be used

across time. The other variants, collectively called TIME STRIKE, globally optimize allocations across




time. This paper documents TIME STRIKE, which is a superset; QUICK STRIKE is identical except for its
single-period solution horizon. For details on QUICK STRIKE, see DeYonke (1995).

C. THE EXISTING MODELS: HEAVY ATTACK, TAM, AND MIXMASTER

At this point, it is useful to provide a brief overview of the three existing models included in the
consolidation, but we will not describe them in detail. For more information, see Brown, Washbumm, and

Coulter [1994], Jackson [1989], Might [1987], or Yost [1995].

HEAVY ATTACK is the oldest of the models, having been in use since 1973. The model was
originally formulated by analysts in the Office of the Secretary of Defense and was implemented by RAND
(Clausen, Graves, and Lu [1974]). HEAVY ATTACK assigns values to each target and optimizes the total
target value destroyed (TVD). The model uses a nonlinear objective function to capture battle-damage
assessment (BDA) effects, and optimizes for a single period (the time-myopic approach). HEAVY
ATTACK is the most aggregated of the three models, allocating aircraft sorties to targets without directly
modeling weapons. Instead, HEAVY ATTACK determines the best weapon for each combination of
aircraft, target, and weather state and computes a composite effectiveness for an aircraft sortie against a
target using an input weather distribution. HEAVY ATTACK also does not model aircraft attrition;
available sorties are an input, and the model’s allocation does not affect available sorties. HEAVY
ATTACK does not contain budget constraints, and only has the single objective of maximizing TVD. The
amount of aggregation in the model, along with the use of advanced nonlinear programming techniques,

makes HEAVY ATTACK very small and very fast, with response times in seconds.

TAM was developed by the Air Force Studies and Analyses Agency in the mid-1980°s. TAM is
highly detailed, allocating sorties by aircraft, weapon, target type, target distance, weather state, and time
period. In addition, TAM offers multiple objective functions, budget constraints and attrition constraints.
The most common TAM objective is maximizing TVD; as opposed to HEAVY ATTACK, all TAM’s
objective functions are linear. BDA is not modeled in TAM, but available sorties are affected by attrition.
TAM weather differs from HEAVY ATTACK in that TAM assumes the weather is known perfectly.
However, the model uses the weather distribution to constrain the proportion of the time each sortie type
can be used. TAM optimizes globally across time, but this feature and other dimensions in the model make

the resulting optimizations very large. TAM solution times range from one to three hours.

MIXMASTER is a collective name for an optimization model and an heuristic developed at the
Air Force’s HQ Air Combat Command in 1990. The MIXMASTER linear program (LP) is a time-myopic
version of TAM with only the TVD objective function, while the MIXMASTER heuristic is a greedy sortie
allocation scheme that uses target values to determine the proportion of sorties dedicated to each target

type. MIXMASTER was built as a response to dissatisfaction with HEAVY ATTACK, and the developers




were directed nof to use optimization. The LP version of MIXMASTER was written only as a check for the

heuristic (Langbehn and Lindsey [1991]).

Figure 2 summarizes the characteristics of the existing models, and illustrates the wide disparity in

model philosophies with respect to objectives, constraints, and dimensionality.

HEAVY ATTACK | TAM MIXMASTER

Objective function
linear X X
nonlinear X
multiple

Sortie dimensions
aircraft X
weapon
target X
loadout

time period
distance band
weather state
Target dimensions
type X
distance band
Time approach
myopic X X
global X
Miscellaneous
BDA X
weather known X X
weather unknown X
budget X
attrition affects sorties X X

b

X X X X X X X
X X X X

> X

X X

Figure 2. Capabilities of existing munitions models. The existing models vary widely with
respect to objectives, constraints, and dimensionality.




II. TIME STRIKE OVERVIEW

While TIME STRIKE is intended to be a consolidation, several features have been added that
were not available in the existing models. Also, TIME STRIKE is not a single formulation; it offers user-

selectable objective functions and constraints to allow the analyst to tailor the model to the issue at hand.

A. OBJECTIVE FUNCTIONS

TIME STRIKE retains some of the objectives common to the three existing models, but modifies
them. In addition, TIME STRIKE adds two campaign-oriented objectives, which have proven to be the
most popular during development tests at HQ ACC.

The most commonly-used objective in the existing models is maximizing TVD. TIME STRIKE
offers this objective, but we do not recommend it to new users because relying on target values to control
the campaign is a common criticism of the existing models. While target values make sense from an
economic point of view, they have proven difficult to determine in practice and are widely viewed as
tuning knobs used to get the existing models to kill targets in a particular order. As a result, the user
community tasked the working group to find a more natural way of modeling campaign goals without

constantly adjusting target values.

The next two objectives are inherited from TAM. The first minimizes aircraft attrition subject to a
set of target destruction goals, while the second objective minimizes the cost of buying new aircraft and
weapons subject to target destruction goals. The problem with these objectives is that they are inelastic;
that is, if the model can’t kill all the targets required, the model terminates as infeasible and yields little

useful information.

To overcome this problem, TIME STRIKE offers two elastic objectives. The first, called the time-
scripted objective, allows the user to designate goals for destroying targets across time. TIME STRIKE
minimizes the sum of the penalties associated with not achieving the goals, which keeps the model feasibly

if the goals can’t be met.

The time-scripted objective works well in cases where the user is evaluating a specified schedule
for a campaign. However, users often want to determine the time necessary to achieve campaign
objectives, so TIME STRIKE’s final objective function is called the phase-goal objective. In this objective,
the user divides the campaign into phases, which are sets of goals for each target class. The objective
pursues the phases in a hierarchical order defined by the user, and attempts to minimize the time required

to accomplish the phases. This objective allows the user to define overlap between the phases, so a phase




can start before all the goals in the previous phase are met. As a result, the user can control each goal’s

degree of preemption.

TIME STRIKE’s notion of target classes is a major difference from the existing models, and
supports the fact that campaign objectives involve killing collections of related targets rather than
individual target types. Target values cause problems in the existing models because they do not apply to
sets of targets; instead, the user has to determine values that induce the model to kill the targets in sets.
TIME STRIKE avoids these problems by allowing a user to group a set of target types, set a time- or
phase-dependent goal for their destruction, and rely on the model to treat them as a group. An example is

shown in Figure 3:

TARGET TYPES TARGET CLASSES GOALS

Kill 50% by the end

main runways |”—' of time period 1
hardened aircraft [ airfiold Kill 80% by the end
shelters 1 Irields of time period 1
maintenance
facilities
______ OR ------
l sector ops center ﬁ,
- - - o
[ air defense radar site |—— integrated air Kill 80% in phase 1 ]
I defense system
regional air defense Kill 50% in phase 1 ‘
HQ

Figure 3. Targets, target classes, and goals in TIME STRIKE. A target can be included in
multiple classes, and each class can have its own time- or- phase-dependent goal. User-defined
penalties determine the importance of achieving each goal.

In this example, the sector ops center is a member of both the airfield and integrated air defense
system target classes. TIME STRIKE’s phase goal objective function would require the user to define the
proportion of targets in each class that need to be killed to complete the phase, while the other objectives
would require the user to set proportions by time period. In any case, grouping targets by class and setting
the objectives by class is a much more natural way to express campaign objectives to the model than using

individual target values.
B. SORTIE AND KILL ACCOUNTING

TIME STRIKE unifies several ideas in the existing models about what can happen on each sortie

and how kills are counted. Figure 4 shows all possible sortie outcomes in TIME STRIKE.




AVAILABLE SORTIE
[

[ ]
i Not Scheduled { Reaches Target |
] 1
| 1 } | 1
no weather attrition resource expected klis in-flight weather abort
capability limit limit
: expected attrition 3 Eexpeded attn'tionE

Figure 4. Possible outcomes of a sortie in TIME STRIKE. The available sortie may not be

scheduled due to a lack of weather capability, the model already having lost too many aircraft, or
the lack of a resource such as weapons. Otherwise, the aircraft reaches the target and is subject
to attrition. The model computes expected kills for the cases that do not abort at the target due to

weather.

The outcomes are straightforward. A sortie may not be scheduled due to an unfavorable weather forecast,
an attrition limit which prohibits further flying, or an aircraft running out of a resource such as weapons.
Also, the sortie is subject to a probability of an in-flight weather abort due to errors in the forecast.
Expected kills and expected attrition for sorties that strike the target are inputs, and we assume the expected

kills are adjusted for the number of aircraft that are killed prior to reaching the target.

Once a target is struck, there are also several possible outcomes, as shown in Figure 5. This kill-
accounting scheme captures an important effect—previously modeled only in HEAVY ATTACK—which
is that a target can be killed, but misclassified and restruck. This dilution of sorties due to incorrect battle-
damage assessment (BDA) is an important effect and must be represented in a realistic model. Another
important effect the ability of the enemy to regenerate (repair) dead targets. In both cases, TIME STRIKE

has modified and extended the existing approaches, as discussed later.

TARGET STRUCK AND KILLED
|
| ) |
Target BDA Restrike from Target BDA
Correct Previous Incorrect BDA Incorrect
]
L ]
target dead E § target regenerates E %target scheduled for restrike

Figure 5. Possible outcomes of a target kill in TIME STRIKE. A kill may either have correct
BDA, in which case it is either dead forever or regenerates, or it may have incorrect BDA and is
scheduled for a restrike. Only one of the outcomes results in a permanent kill.




C. TIME MODELING

Time periods are necessary to model arrivals of aircraft and weapons in the theater, changes in
sortie rates, shifts in campaign objectives, and changes in attrition rates. However, the existing models view
time differently. Both HEAVY ATTACK and MIXMASTER are time-myopic, with output from each
period’s solution (with perhaps some external alteration) used as input for the next period. TAM, on the

other hand, has an intrinsic time index in the formulation.

There are disadvantages to adding time to a model. HEAVY ATTACK can use a nonlinear BDA
function and still remain small and fast because it only optimizes in a single period. Adding time to
HEAVY ATTACK would enormously complicate the model. In addition, there is a good argument for
forcing myopia. The existing models conduct one-sided campaigns — the enemy has no choices. Letting
an optimization look across time contradicts reality, particularly when the models assume the enemy
doesn’t react. This omniscience has been a perennial problem in TAM. TAM tends to wait for periods with
low attrition rates to kill difficult targets; it also uses its knowledge of the future to kill easy targets with

high target values early so more of them are repaired and then restruck (earning more TVD).

Adding time also increases the size of the model. HEAVY ATTACK and MIXMASTER are small
and quick, because each period’s optimization consists of 1,000-2,000 variables and a few hundred
constraints. On the other hand, TAM can grow as large as 180,000 variables and 5,000 constraints due to
the intrinsic time index (as well as the weather index, distance index, and so on). This leads to another
tradeoff: TAM is usually run with only 4 periods of 3,7, 20, and 30 days, because the LP becomes too big
to solve otherwise. Conversely, HEAVY ATTACK can run 20-30 myopic time periods in very little time.

Nonetheless, the myopic approach is a disadvantage for the analyst trying to solve a resource
allocation or budgeting problem. If there is a fixed pool of procurement money available for a multi-period
scenario, the analyst has to explicitly allocate or constrain expenditures by period. Since optimization is
good at making these decisions, it seems unreasonable to force the analyst to guess the best time-

constrained allocations outside of the model.

The compromise reached in TIME STRIKE is to use time explicitly in the model, but to limit the
optimization’s false omniscience. In TIME STRIKE, time is still divided into periods of user-selectable
lengths, but now each period consists of an integral number of fixed-length planning cycles. A planning
cycle is the number of days over which we execute the campaign with no feedback from our actions; in
other words, this is the assessment time lag. The planning cycle is key to TIME STRIKE’s BDA and target
regeneration submodels, because it reintroduces myopia and some of the so-called friction of war into the

model. If we could solve enormous models at no cost, we would simply define the time period length as the




planning cycle length. Unfortunately, this isn’t possible, so we use the notion of a planning cycle to capture

BDA and target regeneration effects within a period.

Figure 6 summarizes the TIME STRIKE’s time concepts. The user decides the total length of the
campaign and divides the campaign into periods. The periods can be unequal lengths, but each must
contain an integral number of planning cycles. If an analyst is using the time-scripted objective, he must
specify goals for each target class and time period, and the model will try to meet the goals. If he is using
the phase-goal objective, he must determine goals for each target class in each phase, and then the model

will try to minimize the number of time periods required to achieve the phases.

The analyst must weigh time fidelity in the model versus responsiveness when using TIME
STRIKE. If the analyst needs many time periods for goal changes and aircraft arrivals, he can do so at the
cost of generating a much bigger model. If his goals are coarser over time and he needs quicker
turnaround, he can use fewer time periods and generate a smaller, faster model. In either case, the addition
of the planning cycle cures problems with BDA and target regeneration within a period, as we’ll discuss in

the next section.

A INPUT: TIME-SCRIPTED GOALS >

TIME PERIOD PLANNING CYCLE
LENGTH LENGTH

START START END

CAMPAIGN LENGTH

-¢ Ll

OUTPUT: LEVEL OF PHASE
ACHIEVEMENT

Figure 6. Time periods, planning cycles, and types of goals in TIME STRIKE. Period T1
contains 2 planning cycles, while Period T2 contains 4 planning cycles; the entire campaign
consists of these two periods. If the analyst is using the time-scripted objective, he designates
goals for the end of each period as input; if he is using the phase-goal objective, the model gives
the level of phase achievement by the end of each period as output.




D. BATTLE-DAMAGE ASSESSMENT AND TARGET REGENERATION

BDA has been a problem for the existing models, with HEAVY ATTACK being the only model
that accounts for restriking dead targets due to bad BDA. TAM and MIXMASTER assume a dead target is

never restruck, which is unrealistic.

In HEAVY ATTACK, the probability of restriking a dead target is a function of the number of

targets already killed and a parameter known as the “C-factor,” which varies between 0 and 1. A C-factor
of 0 implies perfect BDA, while a C-factor of 1 implies no BDA and random targeting. There are two
problems with this approach. First, the C-factor has no physical meaning. C-factors are not probabilities,
but are merely adjustment factors that determine the marginal returns of continually attacking a particular
set of targets (Lord [1982], Boger and Washburn [1985]). As a result, the analyst has to set the C-factors

based on their effects on the model output rather than by using any available data.

Second, HEAVY ATTACK presumes that success in killing additional targets of a particular type
is a function of the number of those types of targets already killed. For a collection of tanks on a battlefield
in a short time interval, HEAVY ATTACK’s BDA scheme is a good model. The more tanks that are killed,
the more difficult it is for an attacker to discriminate among live and dead tanks. On the other hand, this is
not a good model for fixed targets such as bridges. For these targets, the probability of a bad assessment

has nothing to do with the number of similar facilities that have been bombed.

QUICK STRIKE originally used a linearized version of a BDA model proposed by Boger and
Washburn [1985] that recast the C-factors as the probability of correctly assessing a live target. Boger and
Washburn developed a differential equation relating this probability to the probability of killing a live
target, given a certain number of live and dead targets. The problem with this approach is it has too much
memory. A tank killed on the battlefield 30 days ago probably has little or no effect on the current

assessment issues: the battlefield has probably moved, and the dead tank no longer functions as a decoy.

The BDA problem is an open research issue. In the meantime, TIME STRIKE’s BDA model is a
compromise that keeps the model linear, explicitly defines the BDA factors, and denies the optimization’s
tendency to defeat BDA effects through omniscience. First, TIME STRIKE uses a single BDA input for
each target type, which is a static probability of misclassifying a dead target as still being alive. Second,
TIME STRIKE does not allow credit for any more kills against that target type until each misclassified

target is restruck. This is illustrated in Figure 7.

In this example, T1 contains 2 planning cycles. We assume kills occur uniformly across a time

period, so half of the misclassified targets happen in the first planning cycle of T1 and must be restruck in
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T1, while the other half must be restruck in T2. On the other hand, T2 contains 4 planning cycles, so 3/4 of

the targets struck in the period that have incorrect BDA must be restruck within T2.

This mechanism allows us to capture the BDA effects and the lag effects in long time periods. If
the model could wait until the next period to restrike targets, it would tend to wait until the Jast period to
accumulate kills and avoid the workload caused by bad BDA. This can’t happen in TIME STRIKE, as kills
against these targets are discounted and the model prohibits additional kills against other targets until the
bad BDA workload is accomplished. Conversely, the planning cycle lag forces some semblance of reality

by making the model wait to recognize the need to do restrikes.

TIME PERIOD PLANNING
LENGTH CYCLE LENGTH
I | | | | | |
i i | 1 | B |
START START START
T T2 T3

MIS-BDA’D TGTS
KILLED HERE ARE
RESTRUCKIN T2

MIS-BDA’D TGTS :

KILLED HERE ARE
RESTRUCKIN T1

Figure 7. BDA in TIME STRIKE. Period T1 contains 2 planning cycles. Incorrect BDA from
targets struck in the first planning cycle of T1 forces restrikes in the second planning cycle of T1,
while incorrect BDA in the second planning cycle of T1 forces restrikes in period T2. This
approach allows for both a lag time to recognize bad BDA and the ability to schedule restrikes
within a time period.

Target regeneration also uses the planning cycle. TIME STRIKE lags the detection of regenerated
targets by one planning cycle, using the same logic as it uses for incorrect BDA. Again, the assumption of
the planning cycle is that the sortie allocation is fixed over the length of the cycle, and the model cannot act
on new information until the next cycle. Therefore, a newly-regenerated target must wait one cycle before

it can be retargeted.

A serious limitation of the existing models is that they do not allow target regeneration within a
period, which is a problem for targets with short repair times in long time periods. For example, a target
such as a runway may have a 12-hour regeneration time. Unfortunately, the existing models will kill it once

in a 30-day period, assume it’s suppressed the entire time, and not detect it as functional until the next
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period. This seriously overestimates the progress the model is making in the scenario, and, in the case of
TAM, makes the optimization more likely to kill targets in long time periods. TIME STRIKE allows
multiple regenerations and retargeting within a time period, up to the number of planning cycles. Since the
objective functions only count the target’s status at the end of a time period, TIME STRIKE must allocate

more sorties than the existing models to keep a target dead or in repair.

TIME STRIKE can also control the total number of targets regenerated. TAM assumes every
target that is killed is eventually repaired, while the version of HEAVY ATTACK currently in use only
allows targets to regenerate once. TIME STRIKE compromises by using an input repair proportion to
determine the expected number of targets repaired after every planning cycle; in addition, the user can also

adjust this parameter to implicitly constrain total repair capacity.

Target regeneration and BDA are closely related in TIME STRIKE, and are implemented in one
submodel. The formulation of this submodel is quite lengthy and is presented from a stochastic point of

view; the details are in Appendix A.
E. WEATHER EFFECTS

The existing models describe weather in terms of “weather states”, which are mutually exhaustive
combinations of ceiling and visibility. Historically, the munitions-analysis community has partitioned the
distribution of weather into 6 states and has used the proportion of the time the weather is in each state as a
static input. These states affect the model because each aircraft-weapon combination has a number of
delivery profiles associated with it, and each profile is valid only in certain weather states. For example, a
medium-altitude profile might only be possible in the best three weather states, while a low-altitude profile

using radar bombing might be possible in any weather state.

TAM and MIXMASTER assume perfect weather knowledge. There is no sense of a forecast, and
these models assume the weather states occur in their fixed proportions in each period. On the other hand,
HEAVY ATTACK models weather through its weapon-aggregation scheme. The HEAVY ATTACK
preprocessor first finds the best weapon and delivery profile for every aircraft-target-weather state
combination, and then computes a weighted average of weapons effects and attrition for each aircraft-target
combination based on the weather distribution. This procedure is equivalent to assuming that the weather is
unknown when aircraft are allocated to targets, but known when weapons and delivery profiles are

selected.

Neither assumption is true. We don’t have perfect weather knowledge, but we can forecast with
some degree of accuracy. This issue has become more important as we develop autonomous (and

expensive) weapons that have guidance systems unaffected by weather, because we need to correctly
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measure the payoff from having such weather-resistant weapons. Unfortunately, weather is a difficult issue,
and weapons are affected by more that just ceiling and visibility. Humidity, precipitation, fog, thermal
contrast, infared transmittance, and many other factors affect the ability to deliver a weapon. In addition,
modeling weather suggests a Markov decision process (e.g., Ross [1993]): first, we make a decision based
on a forecast; then, nature acts; and then we revise our decisions based on the outcome of our former

decision and the subsequent state of nature.

Weather effects are an open research question for these models. TIME STRIKE does not offer a
complete solution to the weather problem, but takes a step further than existing models by forcing sorties to
be scheduled in accordance with the average forecast rather than the distribution of weather encountered.
More importantly, TIME STRIKE dilutes scheduled sorties by using the probability of forecast error to

determine the number of in-flight weather aborts.

As an example, consider the following data provided by the Air Force Environmental Technical

Applications Center in Figure 8.

WEATHER STATE (WX) | PROBABILITY OF FORECAST
WX 1 0.020
WX 2 0.050
WX 3 0.040
WX 4 0.031
WX 5 0.053
WX 6 0.806
TOTAL 1.000

Figure 8. Marginal forecast probabilities by weather state. Higher numbers indicate more
favorable weather. For example, WX 1 represents a ceiling of 0 feet and 0 NM visibility, while WX
6 represents a ceiling of 12000 feet and a 5 NM visibility.

A delivery profile that is valid in one weather state (WX ) is valid in any higher state. Therefore,
TIME STRIKE selects delivery profiles based on the forecast using cumulative constraints. In this
example, 2% of the profiles must be capable in WX 1, 7% must be capable in WX 1 or WX 2, 11% must
be capable in WX 1, WX 2, or WX 3, and so on. If an aircraft type is only capable in WX 6, then TIME
STRIKE assumes 19.4% of the available sorties for that aircraft type are lost in the period; these sorties are

unscheduled and are not subject to attrition.

To account for forecast error, we use the conditional probability the weather is invalid for the
profile, given that we forecast valid weather for the profile. We use this probability to determine the

proportion of sorties that aren’t aborted in-flight due to weather; data for our example is shown in Figure 9.
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WX REQUIRED FOR PROFILE PROPORTION NOT ABORTED
WX 1 OR BETTER 1.0000
WX 2 OR BETTER 0.9502
WX 3 OR BETTER 0.8596
WX 4 OR BETTER 0.8185
WX 5 OR BETTER 0.7675
WX 6 0.7665

Figure 9. Non-abort proportions by weather state. These are the proportion of the time the
weather is in a particular state or better, given the forecast was for a particular state or better.

Suppose the model uses a profile whose minimum weather state is WX 3. Given the forecast was
for WX 3 or better, there is a .8596 probability the weather will be WX 3 or better. When the model
schedules WX 3 deliveries based on a forecast, 85.96 % of them reach the target and 14.04% abort.

TIME STRIKE assumes an aircraft that suffers a weather abort is still subject to attrition; in other
words, the aircraft goes all the way to the target before discovering it can’t deliver the weapons. TIME
STRIKE also assumes the mission doesn’t hit a an alternate (dump) target on a weather abort, and the
munitions aren’t consumed unless the aircraft is lost. This is reasonable, because the cost and availability of
modern smart munitions makes an aircrew reluctant to waste them on a dump target. However, carrier-
based aircraft do dump munitions due the dangers of an arrested carrier landing while carrying heavy

weapons; if TIME STRIKE is ever used for naval forces, we can easily accommodate this change.
F. DATA FILTERS AND OPERATIONAL LIMITS

TIME STRIKE uses a number of factors outside of the formulation to limit the number of
alternate sortie types. This is necessary because the number of possible combinations is very large. A
typical scenario may contain 9 aircraft types, 90 target types, 300 delivery profiles, and 60 weapon types;
in addition, aircraft may carry smaller loadouts of the same weapon to extend their range. When combined
with multiple time periods, these combinations can easily lead to an LP containing several hundred

thousand variables.

The first step in TIME STRIKE preprocessing is to remove dominated profiles from the database.
These are delivery profiles for a particular aircraft-weapon-target combination that have a lower

effectiveness and a higher attrition than another available profile in that weather state. This simple screen

removes up to 30% of the possible aircraft-weapon-profile combinations.




The second step is adopted from HEAVY ATTACK, and involves removing operationally
infeasible combinations of aircraft, weapons, and targets from the database. This is done externally, and the

amount of reduction depends on how many cases the user is willing to rule out.

Next, we filter the inputs based on two user-supplied settings: the minimum expected kills per
sortie (EKS); and the maximum attrition per sortie. Attrition and EKS limits are present in various forms in
the existing models’ preprocessors, but we have emphasized them in TIME STRIKE. An aircraft-weapon-
delivery profile combination that has a probability of .001 of hitting a target and a probability of attrition of
.25 is unlikely to be chosen in the optimization, and would rever be chosen in reality. Therefore, we have
urged to users to be aggressive with these filters and throw out as many excess variables as possible prior
to running the LP. Computational experience with TAM shows that LP’s in this class only choose a few
hundred deliveries out of several hundred thousand, so it makes sense to remove the inefficient alternatives

before presenting them to the model.

The final screen is based on an operational constraint that is not treated in the existing models: the
minimum operating altitude in the period, commonly known as the Aard deck. Hard decks are real and
crucial operating constraints in modern air warfare. If the theater commander decides to fight a medium-
altitude war such as DESERT STORM, a great number of delivery tactics are simply not available. In

addition, weapons effectiveness, particularly for visual deliveries, varies greatly with release altitude.

HEAVY ATTACK’s average weapon scheme picks the best delivery in each weather state and
computes a weighted effectiveness; however, the utility currently in use does not consider delivery
altitudes and may include invalid combinations. The TAM and MIXMASTER preprocessors choose the
best profile for each aircraft-weapon-weather state combination, but some of these profiles may be invalid
as well. The latter scheme is also inefficient; if the same profile is the best for each weather state, TAM and
MIXMASTER will use 6 decision variables to represent this single alternative. TIME STRIKE’s explicit
use of the delivery profile allows filtering on the hard deck and prevents duplicate representation of the

same sortie type in the model.

Figure 10 shows a typical reduction due to applying these filters. Reductions of an order of

magnitude in the number of sortie cases are not uncommon.
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NUMBER OF CASES
INITIAL DATABASE 37,000
after excluding DOMINATED PROFILES 26,000
after excluding OPERATIONALLY INFEASIBLE CASES 10,000
after applying FILTERS (effectiveness, attrition, hard decks) 3,000

Figure 10. Data filtering for TIME STRIKE. Applying filters for dominated profiles, operational
infeasibility, effectiveness, attrition, and hard deck settings can remove over 90% of the possible
sortie combinations prior to running the model. Using the filters can drastically reduce the size of
the LP.

G. TWO-THEATER MODELING

Currently, the US national military strategy requires support of two near-simultaneous “major

regional conflicts” (MRC’s). Unfortunately, none of the existing models allow for two theaters.

TIME STRIKE allows for two-theater campaigns, so the analyst can develop requirements for
both theaters simultaneously. The first campaign starts in the first time period, and the second campaign
can start in any time period. The analyst can divide the budgets among the theaters or use additional

constraints to bound the overall resource consumption in both theaters.

Another important capability in TIME STRIKE is the ability to swing aircraft from the first
campaign to the second. Force reductions have led the USAF to adopt a swing doctrine for certain high-
value, high-leverage assets such as the F-117. However, the question of when to swing these aircraft and
how many to swing is an open issue. TIME STRIKE can optimize the timing and number of swing aircraft,

given user-supplied bounds on the number that can swing and when they can swing.

All the machinery available in one campaign in TIME STRIKE is implemented in the two-theater
formulation. The theaters have separate target sets, separate weather distributions, BDA rates, regeneration
rates, sortie rates, force structures, and so on. This capability does not come without cost; a two-theater LP

can become very cumbersome, making intelligent use of the filters very important.
H. BUDGET CONSTRAINTS

HEAVY ATTACK and MIXMASTER do not contain budget constraints. The most common
version of TAM has one budget constraint, which is applied globally. Aircraft and weapons in TAM have
marginal costs, and the model can either purchase assets subject to a spending constraint or minimize the

amount spent to achieve certain goals.

The TAM budget scheme has two shortcomings. First, the single budget isn’t flexible enough to

account for different types of resources consumed by weapons and aircraft, such as procurement funds,
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airlift, and airfield space. Second, it doesn’t distinguish expenditures on aircraft, which are long-term

assets, and munitions, which are expendables.

TIME STRIKE contains four different budgets in two categories, and the analyst can use any or
all of them as constraints. The categories are called carry and no-carry to denote how the resource can be
spent across time. A carry budget represents a resource such as procurement funds; it has no relation to
time within the model, because we are trying to determine the investment necessary to meet campaign
goals in a future conflict. Conversely, a no-carry budget represents a resource that must be used within a
time period; unused resources don’t “carry” to succeeding periods. This budget models resources such as
airlift, which must be spent when available and can’t be saved. There are two carry and two no-carry
budgets available in TIME STRIKE.

CARRY BUDGET NO CARRY BUDGET

TIME TIME
MRC MRC
TIME TIME
MRC MRC
TIME TIME
MRC MRC

CARRY BUDGET
AIRCRAFT, WEAPONS

ACROSS TIME
AND

NO-CARRY BUDGET
AIRCRAFT, WEAPONS

Figure 11. TIME STRIKE budgets. Each budget type has its own pool of aircraft and weapons.
The “carry” budgets represent resources that can be spent across time and theater (MRC), while
the no-carry budgets represent resources that can only be spent when and where they are
available.

One limitation of TIME STRIKE is that assets can only be bought in one budget; purchased assets
do not consume a vector of resources, as shown in Figure 11. For example, buying a weapon cannot
simultaneously consume procurement dollars and mobility resources; the assets are only available in each
budget, and each budget must have its own upper bounds on aircraft and weapon purchases. This may
seem to be an unreasonable assumption, but we chose to implement budgets this way to avoid
unnecessarily complicating the formulation to address a set of problems that have yet to come up in

practice.
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I. AIRCRAFT ATTRITION

TIME STRIKE uses an approach similar to TAM’s for modeling aircraft attrition. Each feasible
combination of aircraft, weapon, target, and delivery profile suffers an input proportion of attrition based
on the time period; however, targets killed by the model do not affect these attrition rates. Changes in
attrition rates due to enemy air-to-air or surface-to-air assets as a function of time are determined externally
to the model. TIME STRIKE uses these inputs to constrain or minimize attrition, depending on how the

user is running the model.

However, the user has the option in TIME STRIKE to specify how attrition affects sortie
generation. In TAM, attrition reduces the number of available sorties. TIME STRIKE offers this option
(see Appendix C), but also offers the option of turning off the sortie reduction. The first case is the same as
assuming no replacement aircraft are available; the second case assumes adequate replacement aircraft are
available immediately, so no sorties are lost due to attrition. However, TIME STRIKE can still constrain

aircraft losses in the second case.
J. IMPLEMENTATION

TIME STRIKE and QUICK STRIKE are straightforward LP’s that do not require special solution
techniques. Therefore, the Air Force has chosen to use GAMS (Brooke, Kendrick, and Meeraus [1992] ) to

generate the models. The system can use any commercial LP solver that interfaces with GAMS, and input

and output are managed by a graphical user interface that is currently under development. We expect users

to run QUICK STRIKE and TIME STRIKE on a variety of hardware platforms.




III. MODEL FORMULATION

A. INDICIES

These are the indices used by the model.

i aircraft
j weapon
k target
1 loadout
P delivery profile
time period
w weather state
d distance band
c target class
clce target classes with phase goals
c2cce target classes without phase goals
f weapon component family
q weapons qualification family
h phase
b budget
blchb no-carry budgets
b2chb carry budgets
m major regional conflict (MRC) or theater

We also use the following to denote valid n-tuples (correspondences) of the index arguments. For

example, cc(k,c) denotes the set of all admissible target-target class combinations.

ce(k,c) target-target class correspondence

fc(,D) weapon-component family correspondence

qc(§,9) weapon-qualification family correspondence

r(i,j,1,d) aircraft-weapon-loadout-distance band correspondence
we(i,j,p,w) aircraft-weapon-profile-weather state correspondence
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he(e.k,h) target class-target-phase correspondence

The following correspondence is included to clarify the documentation:

mc(c,k) correspondence of target k with the target class ¢ containing the highest goal for

target k

We define these n-tuples with considerable care to limit the formulation to a manageable number

of combinations.

B. DATA

The following are the data used in TIME STRIKE:

ACCOSTSy, budget b resource consumed per aircraft i

ACMAXBUY;, maximum number of aircraft i available for purchase in budget b

ATTR pijgepe losses per sortie for combination i,j,k,p in time period t in MRC m

ATTRWGT objective function weight for attrition

BDAREG, ¢ expected number of targets k dead or in repair in time period t that were
originally struck in time period t*, in MRC m (derived in Appendix A)

BDGLIMITS, , resource limit for budget b2 in MRC m

BDGLIMITT,, , ,

resource limit for budget b1 in period t in MRC m

BUYWGT, objective function weight for spending in budget b

CUMARRIVE,;,  number of weapon j scheduled to arrive in period t in MRC m

ENDDAY last day of period t in MRC m, relative to the start of MRC m

EKSpijiipt expected kills per sortie for aircraft i, weapon j, target k, loadout 1, profile p,
and time period t in MRC m

FAMLIM, ¢ maximum number of common components available for weapon family f in
MRC m

GOAL proportion of targets in target class ¢ to be killed to achieve the goal in time
period t in MRC m

GOALWGT objective function weight for goal achievement

HISTFORECAST,),, cumulative proportion of forecasts for weather states 1 through w in MRC m
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INVENT,;

KFORCE 5,

LOAD,
MAXLOSS,;;
MUNWGT

NABORT,,

ijp

NDAYS,
NPHASEPEN,,

PGOALS,,

PHASEPEN,,

PPEN,

PPENALTY

PROPORTION;,

PTGOAL

SORTSWITCH

SORTWGT
SRy

SWINGS;,
TBLIMITS,
THRESHOLD,,
TIMEAC,;

TOTTGTS

inventory of weapon j on-hand in MRC m

number of target k that must be killed in MRC m by aircraft i with weapon j
in time period t

number of weapons carried per sortie for loadout 1
maximum losses of aircraft i allowed in MRC m
objective function weight for munitions use

proportion of sorties by aircraft i flying profile p with weapon j not aborted
inflight in MRC m

number of days in time period t
objective function reward for killing targets without phase goals in MRC m

proportion of targets in class ¢ to be killed in MRC m to achieve phase goal
h

objective function penalty per day for not meeting phase goal h in MRC m

objective function penalty for not meeting the time-scripted goal for target
class ¢ by the end of period t in MRC m

importance value of target class ¢ in phase h in MRC m

proportion of aircrews manning aircraft i qualified to drop weapons in
qualification class q

maximum PGOALS,; for all target classes containing target k

binary input that determines whether or not attrition reduces available sorties
(1=yes, 0=no)

objective function weight for sorties

sorties per day for aircraft i in period t in MRC m

maximum number of aircraft i allowed to swing in period t

total spending limit for budget b

proportion of goal h required in MRC m before next phase can start
number of aircraft i scheduled to arrive by period t in MRC m

total number of type k targets in distance band d in MRC m
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TOTTGT, total number of type k targets in MRC m

TSORT mijue expected number of sorties per aircraft for combination i, J» Kk, p in period t
in MRC m, including attrition

TV target value for target k in period t in MRC m
TVDWGT objective function weight for TVD
WPNCOSTS;, resources consumed per weapon j bought in budget b

WPNMAXBUY;, maximum number of weapon Jj available in budget b

C. VARIABLES

All variables are given in lower case. The following variables represent the value of the various

objective functions:

z time-scripted goal objective value

a minimum attrition objective value

Oy, minimum cost objective value for budget b
v target value destroyed objective value

p phase-goal objective value

These are the decision variables:

Xmijiipt sorties assigned

pdiff . proportion of kills below goal ¢ for target k in MRC m

pdiffph, positive difference from goal for phase h at the end of time period t
wpnbt, weapons of type j bought in budget b in time period t and MRC m

acbt ., aircraft of type i bought in budget b in time period t and MRC m

period,;, binary variable with value 1 if a switch to phase h+1 occurs in period t
leaving;, aircraft i swinging from MRC 1 in period t

arriving;, aircraft i swinging to MRC 2 in period t

onhanduse,y; existing inventory of weapon j used in MRC m

pkills i number of target k kills attributed to class ¢ and phase h by the end of time

period t in MRC m
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D. OBJECTIVE FUNCTIONS

As mentioned previously, TIME STRIKE offers five different objective functions. Our experience
has shown these LPs often have multiple optimal solutions, so we use weights on attrition, sorties,
munitions expenditures, weapons and aircraft purchases, and kills by depth to break these ties. These

penalty terms are defined below:

at = ATTRWGT* ) ATTR i * X mitipe
mijkipt
s0=SORTWGT* " X iti
mijkipt

mu = MUNWGT *

mijkipt

bu= | BUYWGT, * {Z ACCOSTS;, * acbty,, + ) ,WPNCOSTS ;, * wpnbtmjbtj

mb it Jt
The following are the objective functions.

1. Minimize the penalties associated with unmet, time-scripted goals:

min z = Z (PPEN,,,C, * pAiff ke )+ at + so+mu + bu
m,(k.c)ecc(k,c),t

2. Minimize attrition for fixed kill goals:

min g = Z ATTR 4t * X mijhgpe + 50 +mu +bu
mijkipt

The goals are inelastic in this objective function. If the LP can’t achieve the goals, the model is

infeasible.
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3. Minimize cost in a single budget for fixed kill goals:

min co, = Z ACCOSTS;;, * acht ,p, + ZWPNCOSTSjb * wpnbt
mit myjt
+at + 50 +mu

With this objective, user can minimize one of the four budgets and constrain the other three. The
kill goals in this formulation are inelastic.

4. Maximize the weighted sum of TVD and time-scripted goals:

maxvyv =

TVDWGT* Y | TVpy, * Z(BDAREGmk,., * EKS yjuipr * NABORT,
mkt ijlp,t'<t

mijp ¥ xmzjk]pt’)
+GOALWGT* 3 (PPEN,, * pdiffynye, )
m,(k,c)ece(k,c),t

This objective function is included in TIME STRIKE to provide a way to optimize using target

values. The user can reward or penalize TVD and goal achievement by setting the weights.

5. Minimize the time-weighted penalties associated with unmet phase goals:

min P = ) PHASEPEN,,, * ENDDAY,, * pdifiph,,

mht

> NPHASEPEN,, *(BDAREG  * EKS i1 * NABORT i1, * % i )
m.i(k,c2)ecc(k,c2),
Jsb.ps
t=max(t)

In this objective, goals accrue increasing penalties the longer they remain unsatisfied. Targets not
included in the phase goals are consolidated, and the user can either reward or penalize killing them in the

objective function. This objective function requires a mixed-integer formulation to force the model to

achieve the phases in hierarchical order; see Appendix B for details on TIME STRIKE’s solution method.
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E. SIMPLE BOUNDS

In TIME STRIKE, all variables are nonnegative. We also use simple upper bounds on all
variables; these bounds aren’t necessary in most cases, but using them tends to decrease solution time. In
addition, most commercial solvers have a “presolve” feature that relies on bounds to identify rows and

columns that can be eliminated from the LP.

The limits on sorties are given by the maximum number of aircraft available times the number of

days in the period times the sortie rate:

X mitipt S SRypiz * NDAYS , * TIMEAC ,,;; * > ACMAXBUY
b

The next two proportions naturally have upper bounds of 1:

Pdlﬁ mkct <10
pdiffoh, ,, <10

The numbers of weapons and aircraft bought in a time period are limited by the total purchases

allowed:

wpnbt ,;,, < WPNMAXBUY

acht p, < ACMAXBUY,,

The number of aircraft swinging to or from a theater in a period is limited by the total number of

swings allowed for that aircraft type up to and including that period:

leaving; < ZSWINGS,—,v
t'<t

arriving;, < ZSWINGS,-,-
t'<t

The number of on-hand weapons used is limited by the amount available in the theater:

onhanduse, ; < INVENT, mj

mji =
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The final bound concerns the number of kills allocated to a phase goal. In TIME STRIKE, phase
goals for a target class must be nondecreasing across phases, so PGOALS,,,, is cumulative. For example,
if the Phase 1 goal for target class 1 is 20 kills, the Phase 2 goal must be greater than 20. However, the
pKills,, ., variables are the actual kills assigned to the phase, so kills allocated to a phase cannot be any

higher than the difference between the goal for that phase and the goal for the previous phase:

PillS iy < (PGOALS e, = PGOALS,, .1 )* 3. TOTTGTS,
d

F. CONSTRAINTS

The following are the explicit constraints available in the model. The notation lqondiﬁw following
a term means that term is only included if <condition> is true. We use this to identify terms that do not
apply due to either user settings or inadmissible values of indices. The numbers in parenthesis following

the title indicate which objective functions use the constraint.

1. Elastic goal constraints (1, 4):

> (BDAREG,;,, * EKS,,

mijlp,t'<t

gt * NABORT, 11 * %550, )

GOAL,,, * TOTTGT,,
+pdiff s = 1.0

for all m, (k,c)ecc(k,e), t

Note that a target appearing in multiple target classes will have multiple positive (pdiff,..,)
differences. This is intentional; we want a target affecting multiple goals to accumulate multiple penalties
in the objective function. Two important restrictions in TIME STRIKE are: first, goals for each target do

not decrease across time; and second, killing targets beyond the goal is not allowed.
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2a, 2b. Aircraft-sortie constraints, and aircraft buy constraints (1, 2, 3, 4, 5):

X mijklpt <
—— < TIMEAC,,; + . acht,p
%}TSORTmU@t g,

(a)

- Z ATTRmijkpt' * Xmijkipt'

Jkip,t'<t SORTSWITCH=1
+ (a!rriving,-,.]m=1 ~ leaving,| _ 2)
1'<t

forallm, i, t

If SORTSWITCH is set to 0, the model’s sortie generation isn’t affected by attrition, and
TSORT i is set to SR, *NDAYS, for all periods. Also, the attrition sum in equation (2a) is omitted.

Otherwise, we use the form of TSORT ;;yy, derived in Appendix C and include the attrition sum.

The aircraft buy constraints are as follows:

D" achty < ACMAXBUY,, (2b)

mt

foralli, b

3. Attrition constraints (1, 3, 4, 5):

D ATTR i * X ity < MAXLOSS,,;
Jkipt .

forallm, i

TIME STRIKE currently constrains aircraft attrition by aircraft type and MRC. Constraining

attrition by period and across MRCs is a simple matter and may be added in the future.
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4a, 4b, 4c. Weapons use, family, and buy constraints (1, 2, 3, 4, 5):

Y 104D, * [A TTRpjige * (1~ NABORT,;, + NABORT,;, ]* X ikl

iklp,t'<t
<
onhanduse,,; + Z wpnbt iy + CUMARRIVE,,,,
Jht'<t

forall m, j, t (4a)

Z onhandusemj < FAMLIM mf (4b)
Jefe(i.f)
for all m, f
> wpnbt,,p, < WPNMAXB UYy, (4c)
mit
forall j, b

Constraint (4a) counts the number of sorties that either drop bombs on a target or suffer attrition
during an in-flight weather abort; in both cases, the weapons are consumed. Constraint (4b) addresses
weapons that share common components, which is an important issue in munitions allocation.
FAMILYLIM,, gives the total number of available components, but this limit only applies to on-hand

inventory. TIME STRIKE assumes purchased or arriving weapons are complete rounds.

5a, 5b, Sc. Budget constraints (1, 2, 3, 4, 5):

Z ACCOST. S,-’bl * acbtm,bu + z WPNCOSTS b1 * wpnbtm’ ikl S BDGLIMIT Tm’bl’t
i J

for all m, b1, t (5a)
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> ACCOSTS; 4 *acbt,,; yp, + ) . WPNCOSTS ; 4, * wpnbt,, ; >, < BDGLIMITS,, p

it Jt

for all m, b2 (5b)

Z ACCOST ib2 * aCbtm’i’bz’t + Z WPNCOSTSj’bz * anbtm,j’bz’t < TBLIMITsz

mit mjt

for all b2 (5¢)

We track weapons purchases by time period for no-carry (b2) budgets as a convenience; indexing
these purchases by time period isn’t necessary. If the user wants all of a budget available to either MRC, he

can set the individual MRC budget limits to the overall limit, making the last budget constraint redundant.

6. Kills by distance constraints (1, 2, 3, 4, 5):

3" (BDAREGyuty: * EKS e * NABOR Ty * X )
(i.7.Dyer(i,j.ld), p.t'st

< Y TOTTGTS
d<d

forallm, k, t,and d

These constraints limit aircraft-weapon-loadout combinations to targets in valid distance bands.
They are cumulative to allow longer-range deliveries to kill close-in targets. As a result, the x variables do
not need an explicit index for distance (as is used in TAM). In addition, targets that do not regenerate only
require one constraint per distance band for each MRC; this eliminates a great many redundant constraints

and is implemented in the GAMS code.

7. Weather constraints (1, 2, 3, 4, 5):

> Xmijtipr 2 HISTFORECAST, * > X mitipt
(oP)ewe(i, . pr )k o

forallm, i, w, t




These constraints force the model to schedule sorties in proportion to the average weather
forecast. To maintain feasibility, TIME STRIKE requires a dummy target and a dummy weapon that each
aircraft can employ in each weather state. Otherwise, TIME STRIKE would force sorties to be scheduled

for aircraft with no valid sortie combinations in particular weather states, making the model infeasible.

Constraints (6) and (7) model the distance and weather constraints that exist in TAM without
explicitly indexing the Xy, variables for distance and weather. This means that TIME STRIKE will have
far fewer variables than TAM for the same inputs. For example, if we were using 6 weather states and 7
distance bands, 10,000 sortie variables in TIME STRIKE would be equivalent to 420,000 sortie variables
in TAM.

8. Weapons qualification constraints 1,2,3,4,5):

2 Xmiikipt < PROPORTION , * 3" x,,.0.,
jeqc(j,q),klpt jk/pt

for all m and (i,q) with PROPORTION; ;> 0

These constraints model situations where only a certain proportion of an aircraft’s aircrews are
qualified to employ a weapon, or only a certain proportion of an aircraft type are equipped to drop a

weapon.

9. Elastic phase-goal constraints (5):

D PPENALTY,, ., ;,* pkills,, ¢, 4 5,
(k,cl)ece(k,cl)

2. TOTIGIS,, * PPENALTY,, , ,* ( PGOALS,, 1 ;, ~ PGOALS . oy 1
(k,clyehe(clk,h)

h>1j

+ piffph,, =10
forall m, h, t

This constraint measures the weighted proportional difference between the phase goal and number

of kills in time period t, and sums only over targets that have goals within a particular phase. The penalties

give the user influence over what targets are killed first within a phase.




B

10. Phase-start constraints (5):

> pkills, .1 g s < TOTTGT,, * PTGOAL, jy s +
cleme(k,cl),h

TOTTGT, *| 3 (PTGOALy 14 — PTGOAL,yy, )* period,,

t'<t h<max(h)

forallm, k, t

This constraint enforces starting times for phases. Targets in a particular phase goal cannot be
killed until period,,;,, becomes 1, which only occurs if the preceding phase has met its threshold. Since
targets can appear in multiple classes, this constraint is only enforced for the target class that has the largest

goal for the target. Constraint (13) constrains kills assigned to other classes containing the target.

The expression on the right-hand side is somewhat clumsy because the phase goal data is
presented to the model in cumulative terms, but the model needs to know the incremental difference in the
goal from one phase to the next. We have chosen to document this constraint in this way to make the math

match the form of the input data.

11a, 11b, 11¢, 11d, 11e. Phase-preemption constraints (5):

period,,;,, <(1- pdiffph,,,, )/ THRESHOLD,,, (11a)
for all m, h <max(h), t

This constraint induces preemption among phases.Variable period,,;,, prevents the model from
killing targets in succeeding phases by staying at 0 until pdiffph,,;, gets small enough to allow the model to
switch. THRESHOLD,,, allows for flexibility by defining what proportion of the weighted kills must be

achieved before the model can proceed to the next phase.

The notion of a threshold is an important one. If TIME STRIKE had no threshold, the phases
would be totally preemptive and failure to kill one difficult target could stop the entire campaign. On the
other hand, the difficult targets aren’t forgotten, because the penalties associated with positive values of

pdiffph,,;, increase across time.
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In the LP relaxation, period,,,, is a continuous variable. The following constraints stop the model
from hitting phase targets before the previous phase’s threshold is met, and force the continuous relaxation

of the period,;, variables closer to binary values.

D periody, i o 2 (1= pdiffphy,, ) (11b)

<t
forallm,h>1,t

period,;,, can be 1 only in the period in which the goal meets or exceeds its threshold. The

following set-packing constraints ensure this:
Zperiodmh, <1 (11c)
t

forallm, h

The next set of constraints prevent a phase from becoming active before the prior phase has met
its threshold. In addition, these constraints “sharpen” the LP constraint space to encourage continuous

solutions with binary period,,, values.

period,, .1, < Zperiodmhtv (11d)

1<t
for all m, h <max(h)-1, t

TIME STRIKE requires that achievement in a phase must be nondecreasing across time.

Experience has shown the objective function penalties tend to promote this behavior, but we use explicit

constraints to ensure it occurs:
APy 2 pAiffohy e (11e)
for all m, h, t < max(t)

Again, the intent of this entire group of constraints is to ensure proper phase switching and to get

the model to force the continuous relaxation of the binary period,,,, variables as close as possible to values
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of 0 or 1. As discussed in Appendix B, TIME STRIKE uses a sequence of LP solves to fix these variables,

rather than resorting to branch-and-bound.

12. Kill-assignment constraints (5):

> Phillsy g = > (BDAREG i * EKS e * NABORT 5, * X it )

cleme(k,cl),h mijip,t'<t

forallm, k, t

It is necessary to partition the targets that are dead or in repair among target classes and phases to
compute correct values for the pdiffph,,,, variables. Since targets can be members of multiple classes,

TIME STRIKE only constrains the class having the maximum goal for the target.

13. Multiple-class kill constraints (5):
Pkillsy, o1k nt < PRS, cemek cl) i he

for all m, (k,c1)ece(k,cl), h, t

These constraints allocate target kills for targets that are members of multiple classes. Constraint
(12) only involves the target class with the maximum goal for each target in a phase, and that target class
appears on the right-hand side of these constraints. The other target classes containing the target are
constrained at either their simple upper bound or the value of the maximum-goal class. As an example,
consider a target k in phase h and period t with a goal of 8 in Class 1, 10 in Class 2, and 13 in Class 3.
Constraint (12) will divide (or constrain) the number of kills so that pkills,, 3, is less than or equal to 13.
(13) will constrain pkills, ; .5 to be less than pkills,, 5 ;. 1, ., and will also constrain pKills,, ;. 5, to be less
than pkills,, 3 5 n, If pKills,, 35 is less than 8, the other two variables will be set to 8; if it is 11, then
pkills,, ; . and pKills, , ; , . Will be set to their upper bounds of 8 and 10, respectively.
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14. Phase-kill importance constraints (5):

Zpkilzsm,cl,k,h,t
clece(k,cl) >
> (P GOALS,,, ok = PGOALS,, .1 4 11 J
clece(k,cl) h>
Zpkillsm,cl,k,hﬂ,t
clece(k,cl)
Y. | PGOALS,,, iy ~ PGOALS .1 5z
clece(k,cl) h<max(h)

for all m, (k,c1) ece(k,c1) with increasing PPENALTY ,, over the phases, h, t

Constraints (13) and (14) don’t fully account for the case of a target whose importance is low in
an early phase but increases in later phases. For example, if Phase 1 hasn’t met its threshold constraint,
(12b) will prevent any kills against Phase 2 targets. Once the threshold is met the targets can be killed, but

the kills may be allocated to Phase 2 instead of Phase 1.

This is a functional as well as an analytical problem. Due to the nature of the penalties, it would
take a large number of binary variables to enforce assignment of kills to the proper phases. Consider a
target with a Phase 1 requirement of 60 kills and a Phase 2 requirement of 30 kills. Ordinarily, we would
assign the first 60 kills to Phase 1 and any remaining kills to Phase 2. This will happen as long as the
penalties for this target don’t increase across phases; if they do, the allocation may be different than what

we intend.

But what does it mean if the penalty in Phase 1 is low and penalty in Phase 2 is high? Perhaps we
want the Kills allocated to Phase 2 because this target wasn’t that important to Phase 1. Was it more

important to kill the 30 specific targets in Phase 2, or to achieve 90 total kills by the end of Phase 2?

Rather than build in a great deal of model structure to satisfy an ill-defined (and rare) issue, we
compromise with these constraints which force the proportion of kills allocated to phases to be
nonincreasing. If, in the example above, we had 70 total kills, the constraint forces at least 46.666 of them

would have to be allocated to Phase 1 and at most 23.333 of them to Phase 2. This would give both phases

the identical proportional achievement of 70/90 = 77.777%.




15a, 15b: Swing aircraft constraints (1, 2, 3, 4, 5):

leaving;, = arriving,, (15a)
for all i, t
and

> arriving; < " SWINGS (15b)
t'<t 1'<t
for all i, t

16: Forced-kill constraints (1, 2, 3, 4, 5):

> (BDAREG 4y * EKS ity * NABORT, 5, * % gy J2 KFORCE
pl

mijkt

for all m, i, j, k, t with KFORCE 3, > 0

These constraints direct the model to use particular weapons against particular targets at particular
times. They are designed to force allocations that the model would not ordinarily make to satisfy
requirements exterior to the model; for example, a user may want to test a policy that a particular target
must be attacked with a particular combination of aircraft and weapon. These constraints are inelastic and

may cause the LP to terminate as infeasible.
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IV. COMPUTATIONAL EXPERIENCE AND CONTINUED RESEARCH

TIME STRIKE’s performance depends on the size of the data set and the objective function used.
Current 1-MRC scenarios consider approximately 9 aircraft types, 60 weapons types, 70 target types
distributed in 4 distance bands, 7 time periods, 6 weather states, 10 target classes, and 3 phase goals. These
problems result in formulations containing approximately 20,000 variables and 7,000 constraints; however,
subsequent filtering after one or two tuning runs reduces the LPs to roughly 7,000 variables and 2,000
constraints for time-scripted goals, and 8,000 variables and 3,000 constraints for phase goals. Solution
times on current PC’s range from 2 to 11 minutes, depending on the choice of LP solver. GAMS overhead

in generating the model is modest, ranging from 1 to 3 minutes.

Problems with 2 MRC:s can create difficulty on the PC platform unless the system is equipped
with more than 32MB of memory. The resulting problems (after filtering) contain 15,000-20,000 variables
and up to 7,000 constraints. Nonetheless, we have solved 2-MRC problems with phase goals on a 120-MhZ

Pentium™ system with 64MB of memory less than 18 minutes.

Our current testing with analysts at the HQ ACC has shown it is better to run TIME STRIKE a
few times with a small number of time periods to identify clearly unproductive sortie combinations and test
the feasibility of the campaign goals. Subsequent runs with filtering go considerably faster, and some of the

solvers allow us to save previous solutions and do a “warm start” for runs with minor changes.

TIME STRIKE and QUICK STRIKE can also work together. QUICK STRIKE’s myopia makes it
insensitive to the number of time periods, so a user can run QUICK STRIKE to determine how to set the
time periods in TIME STRIKE. Also, TIME STRIKE can give advice to QUICK STRIKE on how to

allocate resources such as budgets and attrition across time.

Development will continue with TIME STRIKE. We are building a submodel for the air-to-air
part of the campaign, as well as allowing the model to allocate “suppression of enemy air defenses”
(SEAD) assets. However, both air-to-air and SEAD modeling lead to an issue that has plagued models of

this class, which is how to handle attrition.

Ideally, attrition should be a function of the enemy’s order of battle, so as the model destroys

enemy surface-to-air and air-to-air assets, attrition should decrease. Unfortunately, adding these effects




directly to an explicit-time model makes it nonlinear and nonconvex—in other words, very difficult to
solve. As a result, modelers have avoided putting attrition directly into the model. This is an area where
QUICK STRIKE has an advantage over TIME STRIKE, because QUICK STRIKE can recompute attrition
rates outside of each myopic solve and send those rates to the next time period. However, QUICK
STRIKE’s myopia will not guarantee a global solution of when and to what degree enemy air defenses

should be attacked.

Other submodels can be improved as well. BDA is an issue in many models used in the
Department of Defense, and TIME STRIKE is no exception. TIME STRIKE simplifies and extends current
approaches, but is by no means the definitive answer. As we discuss in Appendix A, target regeneration
and BDA could be modeled in a comprehensive stochastic model describing the states of the targets in each
period, which would strengthen the accounting of the number of targets alive, dead, and awaiting
assessment. In addition, the weather submodel deserves more scrutiny. TIME STRIKE uses expected
weather and forecast data without regard to the relationships across time among weather states. Also, TIME
STRIKE is very conservative on in-flight weather aborts; in actuality, some of these sorties can be

redirected to other targets enroute.

Finally, the largest shortcoming of this model is its lack of an intelligent enemy. Optimization
brings many advantages to the munitions problem, but so far no one has been able to formulate an LP of
this class that allows the enemy to react. We hope that the air-to-air and SEAD submodels currently in
work will allow the enemy to make decisions on the allocation and use of his air-to-air and air defense

assets, but this will be a difficult task.

Nonetheless, we see optimization as a valuable and appropriate tool for the munitions problem.
Optimization can consider a large number of force mixes far faster than a simulation-oriented approach,
and LPs such as TIME STRIKE can make many, many allocation and budget decisions in a single run.
This, along with the sensitivity analysis available in linear programming, has made these tools invaluable

to the US Air Force for the last 25 years. We expect this to be true for the next 25 years as well.
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APPENDIX A: TARGET REGENERATION AND BDA EQUATIONS

The TIME STRIKE formulation requires knowing the proportion of targets killed within a time
period that regenerate both within the period and in succeeding periods. These proportions are used in the
model to keep track of targets that are repaired. This is important, because the goal-oriented objectives

operate in terms of targets currently dead, not in terms of the total number of kills.

Determining these proportions is difficult within an optimization, because the repair times, the
number of targets repaired, and the number of targets with correct BDA are random variables. In addition,
we require that the model wait one planning cycle before detecting a target has regenerated, so some
proportion of kills from a period will not be detected until the next period. Finally, the reader should bear
in mind that we have to keep the linear program linear, so we have not taken the more rigorous route of

developing a comprehensive stochastic model.
We make the following assumptions about target regeneration and BDA:

¢ Each target of a particular type has a stationary probability of being repairable that is

independent of the number of targets killed and the number of times the target has been killed.
 Each target in repair has a independent probability P, of regenerating in one planning cycle.
¢ Targets killed and regenerated require one planning cycle (denoted by C) to be detected.

¢ The number of kills in a time period is a nonrandom quantity determined by the LP, and kills

occur uniformly across the time period.

¢ Each target type has a fixed probability of getting correct BDA. All targets that are dead or in

repair with incorrect BDA are restruck in the next planning cycle.

¢ The probability of correct BDA is independent of whether the target is alive, dead, or in repair,

and it is also independent of the number of times the target has been struck.

At the end of each period, we need to know the expected number of targets in each of three

possible states: alive and targetable; killed and unrepairable (dead forever); and in repair. However, the
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problem is complicated by the fact that a target can be killed, regenerated, and assessed multiple times

within a period.

We will use the following notation:

T, start of the time period

T, end of the time period

C length of a planning cycle

n number of planning cycles of length C in [Ty, T,]

L, expected number of targets detected as alive at the beginning of the ith planning cycle,
1<i<n

L, initial number of live targets

R; expected number of targets in repair at the beginning of the ith planning cycle,
1<i<n

Ry initial number of targets in repair

D, initial number of dead targets

D, expected number of dead targets at the at the beginning of the ith planning cycle,
1<i<n

K total number of (nonrandom) kills allocated by the LP in the period, including restrikes

total number of (nonrandom) kills allocated by the LP in planning cycle i, including
restrikes '

number of kills allocated by the LP in the last planning cycle of the previous period
probability the target is repairable after a strike

probability a target isn’t repairable; NP,=1-P,

probability a target regenerates in the next planning cycle

probability a target doesn’t regenerate in the next planning cycle; NP =1-P,

L]

w z ® Z &M R

probability of correct BDA for a target
NB probability of incorrect BDA for a target; NB=1- B

r repair rate for targets that are repaired

Since kills occur uniformly in the period, K; =K/n Kkills occur in each planning cycle. We will also

make the following two simplifying assumptions:
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 Allkills that occur in cycle i occur instantaneously at the start of the cycle. Therefore, K; =K/n
kills occur at the times Ty, Ty + C, To+ 2C, ... To + (n-1)C.

* Targets dead or in repair are correctly assessed after a restrike. In other words, a restrike

exposes the true state of the target.

The first assumption is conservative, because it gives the targets credit for regenerating faster than
they would if kills followed a time distribution within the cycle. However, planning cycles tend to be short
with respect to the length of the time period, so the effect of this assumption is small. The second
assumption simplifies the model and is probably realistic. Note that a target can be assessed incorrectly

after every regeneration; we only assume that there are no bad assessments against restruck targets.

We will begin with a difference equation for the expected number of dead targets. At the
beginning of each planning cycle, the model allocates K; =K/n kills. However, we expect a proportion of
those kills to be restrikes against targets struck in the previous period that have incorrect BDA. Assuming
that no target is assessed incorrectly for two planning cycles in a row, we have the following expected

number of kills against live targets:

Of these, we expect a fixed proportion to be unrepairable, so the expected number of dead targets

increases by
(K; — K,_, * NB)* NP,

However, some of the restrikes will also result in dead targets. Restrikes go against either dead
targets or targets in repair, and restriking a dead target will not change its status. However, a restrike
against a target in repair can make the target unrepairable. Since we assume BDA probabilities are
independent of repair probabilities, we expect P, proportion of the targets we restrike to be in repair.

Therefore, the following is the number of dead targets due to restrikes:

(K. *NE*B)* NP,




This leads to the following difference equation:

D; =D, +(K; - K;_; * NB)* NP, +(K,_, * NB* P,)* NP,

= Dy +[K; - Koy *NB*(1- B)]* NP,
=D,y +[K; - K,y * NB* NP, |* NP,

We are interested in D, the total number of dead targets at the end of the time period. Expanding

the difference equation leads to the following:

Dy = Dy +[K; - Ko * NB* NP, |* NP,
D, = Dy +[K, - Ky * NB* NP, ]* NP,

= Dy + K, * NP, — Ky * NB* NP2 + K, * NP, — K; * NB* NP,
= Dy — Ko * NB* NP> + (1~ NB* NP,)* NP, *K; + K, * NP,

n—1
D, =Dy—Ky*NB*NP” +|(1- NB* NP, )* NP, *3 K, |+ K, * NP,

Since K; =K/n,

D, = Dy - Ko * NB* NB,? +(1- NB* N, )* N, * =D
=Dy - Ky* NB* NP2 + K* NP, - K* NB* NP,% +
= Dy - Ko * NB* NP> + K* NP, - K* NB* NP, *(1——)

= Dy — Ky * NB* NP2 + K* NP, *[1-—NP, *(NB—@H

Note that if we have perfect BDA, NB = 0 and

D, =Dy +K*NP,
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We will use the same methods to develop difference equations for the expected number of targets
in repair. We assume repair times are exponential, which implies the probability a target completes repair
in a planning cycle is independent of the length of time it has been in repair. As a result, we only have to

count the targets in repair from cycle to cycle.
The expected number of targets continuing in repair through cycle i is
*
NP, *R,_,
The expected number of targets put into repair due to strikes against live targets is
* *
(K - Ky * NB)* P,

Again, we have to determine the effect of restrikes. The following is the expected number of

targets in repair that are restruck and made unrepairable:
(K;_1 * NB* P,)* NP, * NP,

Some of the targets that would have come out of repair in the planning cycle return to repair due

to the restrikes. The expected number of these is
(Kt * NB*B)* P * P,
Adding these terms with the appropriate signs yields the following difference equation:

R = NPc*R,_y+(K;, - NB*K, ;)*P, -
(Ki—1 * NB* P, )* NP, * NP, +(K,_; * NB* P,)* P, * P,
=NPc*Ry+K;* P, =K, * P, *[NB*(1+ NE, * NF, - P, *P.)]
=NP-*R_;+K,*P.-K,_ | *P, *[NB*(1+NP, -—PC)]
=NP-*R_+K,*P. K, | *P.* 4

where we let A represent the last term in brackets. Expanding each term of this sequence gives the

following general form for R,




Ri=NPc*Ry—Ky*P.*A+ P *K,

Ry=NP-*R +K,*P K, *P. * 4
=NPC2*R0—NPC*KO*P,*A+NPC*P,*K1+K2*P,—K1*P,*A
=NPC2*R0—NPC*KO*P,*A+P,*(NPC—A)*K1+K2*P,

) n-1
R, = NF"*R,~ NP"™' *Ky* P * 4+ P, *(NP, —A)* Y K AN D L g+ p

i=1

Using the assumption that K; =K/n and applying the identity

reduces the sum:

n-1 ) K n-1 .
ZKI' * NPC)‘I—(H'-I) = % Z NPCH—(H-I)
i=1 =1

K

i'=]
=—%* ZNPC"l where i'=n—i

n i'=n-1

n-1
=—% Z NPCI -1
L

K*(l—NPC”"l)
~ n*(1-NE)
K*(I—NPC”")
n* P

This leads to the final result:

K*P (NPC—A)*(I—NPC”‘])
n PC

R, =NP"*R,~ NP1 %K *P * 4+ +1
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The expected number of live targets at the end of the period (Ly) is computed from R, and D:
Ln = L0+R0+D0-'Rn _Dn

It is important to note that L, is the number of targets that are detected as alive at the end of the
time period. Targets killed in the period and regenerating into the last planning cycle are not detected by
the model as being alive, so the model can allocate enough kills to reduce L, to 0. This number of kills is

denoted by K,,,,, and is used as a constraint in the model.

We will illustrate the behavior of K, for a few limiting cases. First, let P, = 0, so nothing can be
repaired. This means that Ry = 0 and R, = 0 (which is easily verified by inspection). In this case, we

determine K,,,, as follows:

0=L0+D0—Dn
NB
=LO+D0—D0+KO*NB*1~Kmax*1*[1—1*(NB————H
n
Ly+Ky*NB
Knax =——"3p
1-NB+—
n

If we have perfect BDA, the above expression reduces to Ky, = L,. This is what we would

expect for no BDA dilution and no target repair.

If the repair rate is infinite, the mean repair time is 0 and targets come back to life instantly.

Therefore, P, = 1 and NP, = 0, and R, is as follows:

K*P,
- A
L oi- 4]

K*P
=——n—’—*[1—NB*(1+NPr -1)]

_K*P,*[1-NB*NF,]

n

n =

Solve as before for K,,:




O=L0+D0—Rn—Dn
Knax * B *[1- NB* NP, |

=L0+D0— _DO
n
+K0*NB*NP,2—Kmax*Ng*{l_Ng*(NB_@)]
n
P Ly+Ky* NB* NP,
max  p *[1- NB* NP,
= ’-+NP,*[1~NP,*(NB—EH
n n

If we assume perfect BDA and 100% repair (NB = 0), then K, reduces to:

Kmax = L *n

This is what we would expect; we kill all the targets in each planning cycle, and they come back

instantly and we have to kill them again. If we allow BDA to be less than perfect and assume no repair,

then K., is

Ly+Ky* NB

()]

which illustrates the dilution of kills due to incorrect BDA.

Kmax =

Figure A1 shows K,,,, for varying values of r and P, in a 30-day time period with C =3, R, =0,
Ly=100, and B=1.0:
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Figure A1. Maximum possible kills (K,,,,) as a function of repair rate (r) and probability of
repair. This graph shows the maximum number of kills possible in a 30-day period for various
repair rates and probabilities of repair, given that 100 targets are alive at the beginning of the
period. Targets with high repair rates and high probabilities of repair can potentially be killed many
times within the period. This chart assumes perfect BDA.

As the chart shows, targets with high repair rates and high probabilities of repair can regenerate
many times within a time period. If TIME STRIKE did not allow kills against regenerated targets within a
period, the model could assume one kill suppresses a target for the entire period, which is very misleading.
In Figure A1, the repair rates correspond to mean repair times of 1, 5, and 20 days; if each target has a
probability of repair of 1, the model must kill them 9.50, 4.52, and 1.79 times respectively within the

period to ensure they are dead at the end of the period.

Figure A2 shows R, for the same situation as Figure A1, except that we assume the model has

allocated 100 total kills in the period:
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Figure A2. Expected number of targets in repair at the end of the period as a function of
repair rate (r) and probability of repair. This graph shows the targets in repair at the end of a
30-day period for various repair rates and probabilities of repair, given that 100 targets are alive at
the beginning of the period and the model allocates 100 kills. This chart assumes perfect BDA.

A final point concerns the total number of target regenerations. The version of HEAVY ATTACK
currently in use allows targets to regenerate once, while TAM allows infinite regeneration. As it turns out,
we can determine the maximum number of regenerations possible in TIME STRIKE. Let TGT denote the
total starting number of targets of a certain type and RG denote the total possible number of regenerations
for that target type. Then:

RG = (P, *TGT)+ (P, * B, * TGT)+...

=TGT*> P'= TGT*(ZP," —1] = TGT*(l lP —1j

i=1 i=0 ~ir

_TGT*P,
" 1-P

Frequently, a user will not know the probability the enemy will repair a struck target. However, he
may have information on the enemy’s total repair capacity. To limit the total possible number of

regenerations implicitly, the analyst can solve for P, in terms of RG and TGT and use the result as an input:
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RG
P=—="
TGT + RG

This development is a heuristic approach to a complicated stochastic process. In particular, the
number of regenerations within a period is a function of the repair rate, the probability of repair, the kill
rate, and the BDA rate. One approach would be to assume that kills follow a Poisson process, so the state
of a target within a period can be expressed as a continuous-time Markov chain. Unfortunately, any attempt
to use this type of model will result in expected numbers of live and dead targets being nonlinear functions
of the numbers of targets killed, which are decision variables in the LP. We would welcome research in this
area, as it may be possible to build a more rigorous model that can stochastically describe all target states

and then develop a linear approximation that will work in an optimization.

In the meantime, the model we have presented does account heuristically for stochastic target
regeneration. It allows regeneration within a period, control over the probability of repair, and sortie
consumption due to bad BDA, features which are not available in the existing models. It is also a linear

function of the optimization’s decision variables, keeping the overall model linear.

To describe how TIME STRIKE uses these equations, we will revise the notation somewhat. Let

n, number of planning cycles of length C in period t

R, expected number of targets in repair at the end of period t

D, expected number of dead targets at the end of the period t

K, total number of (nonrandom) kills allocated by the LP in period t

The first step is to determine the repair probabilities. The density function for X, the repair time,

is fx(x) =re™, x 2 0; therefore,

!

P =PO0<X<QO)= |re ™ dx




We want to know the number of targets dead and in repair at the end of each period to compute

progress towards the goals. We can write the expressions for R, and D, in the following form:

R =G, *R,_—-H,*K, 1 +J,*K,
D,=Dy - L *K,1+ M, *K,

where
G, = NP,™
o NP~ % p * NB*(1+ NP, - P,)
t = nt
P, _|[NB. - NB*(+ N - P (1- NR.")
Jy=—"L* +1
n, P,
% 2
L= NB* NP,
n,
M, = NP, *[1— NP, *(N _AVEH
n;

Expanding the difference equations leads to the following:
R +D, =J,*K, +(G, *J_ - H_)*K,_; +

=2 t
Z [ HGjJ *(Gi+1 *J; _Hi)*Ki +

=1} \j=i+2
t—1

M, *K, +Z(M,- - L)K;
i=1

In TIME STRIKE, the constants REPF,, ., represent the multipliers for targets in repair, and are
computed in the GAMS code from constants denoted as REPG,,,,, REPH,,;,, and REPJ,,,. In the code,
DEADA,,, and DEADB,_,, are the multipliers for dead targets:
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REPF, oy =y Gpy *Jp - H,, t'=1-1

DEADA,,, = M,
DEADB,;, = M, - I,

Summing these terms gives the total expected proportion of targets struck in time period t’ that are
dead or in repair in time period t. While these terms are not combined in the GAMS code, we denote their

sum in the model data as BDAREG,,,,, to simply the documentation:
BDAREG 4y = DEADAyyy|,_, + DEADB, |, + REPF, 4,

A final caution: TIME STRIKE does not explicitly force restrikes resulting from the last planning
cycle of a period to occur in the following period. The reason for this is the model tends to do the restrikes
naturally for the first four objectives, and the constraints used with phase-goal objectives require
nondecreasing achievement across time and indirectly force restrikes. The only effect of not doing a
restrike is that the model can have negative achievement against a target type in a period because it thought

some targets were still alive and did not do the restrikes to confirm their status.

Adding explicit constraints would increase the number of rows in the LP by about 30%, and this
increase is unwarranted. Failure to do the restrikes is rare in our testing, and the functional outcome in the
absence of the constraints is not unreasonable: TIME STRIKE will merely think it achieved a certain level
of achievement in a period, and the level will decrease in the next period because the model chose not to

schedule the restrikes. As a result, failing to do restrikes makes the model think it has achieved less than it

actually has.




APPENDIX B: SOLUTION PROCEDURE FOR PHASE GOALS

The phase-goal objective requires using binary variables to ensure the phases are achieved in
hierarchical order. However, we have found it easier to use a simple heuristic to set the values of the binary

variables after each continuous LP relaxation than to use branch-and-bound.

The phase goals are designed so that each phase must be achieved to a threshold, or proportion of
achievement, before the next phase can begin. The continuous relaxation cannot guarantee this behavior,
despite all the constraints. As an example, consider the proportions of phase achievement from an initial LP

run with m=1, h=2, and t=5, and the threshold set at .8 for all phases. Figure B1 shows the results:
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Figure B1. Phase achievement in the initial LP relaxation for the phase-goal objective. This
graphic shows what happens in the initial solution. Phase 2 should not start until Phase 1 reaches
its threshold achievement of .8, which occurs sometime in period 3. However, the continuous
relaxation allows the model to kill targets in Phases 2 and 3 prior to period 3.

The solution of the first continuous LP relaxation with the phase-goal objective shows Phase 2
and Phase 3 targets are being attacked before Phase 1 reaches the threshold. This is not correct; Phase 2 and
Phase 3 should not begin before period 3.
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The heuristic we use is: first, solve the continuous LP relaxation; second, determine which period
the next hierarchical phase achieves its threshold; third, fix the applicable binary variables (the period,,,
variables in the formulation) to prevent succeeding phases from starting before that period; fourth, solve
the next continuous relaxation for the next phase. The results of this procedure for our example are shown

in Figure B2:
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Figure B2. Phase achievement after setting preemptive binary variables. This graphic shows
what happens when Phase 2 and Phase 3 Kills are prevented before period 3, based on the
results of the first LP relaxation. This second, restricted LP reaches a solution that naturally
enforces the preemption between Phase 2 and Phase 3, so neither Phase 2 or 3 starts prior to the
previous phase reaching the .8 threshold.

This solution also meets the preemption requirements for Phase 3, so no further LP relaxations are

required.

In general, TIME STRIKE will require at most h LP relaxations for h phases. This procedure is
completely automated in the GAMS code, and requires no manual intervention by the user. Since GAMS
passes the basis from the previous solution to the next, restricted solution, the solution times tend to be very
quick. A large 2-MRC problem that required 18 minutes for an initial solution will solve the succeeding

phases in less than 1 minute each. Of course, we would expect this, because only one variable is being

fixed at a bound after each relaxation.




These diagrams also illustrate the importance of setting a threshold. In this instance of TIME
STRIKE, a threshold of 1.0 for Phase 1 (pure preemption) would mean nothing in Phases 2 or 3 could ever
be attacked, because the model never completely achieves Phase 1. Our testing has shown that this is the
most common case; due to restrikes and target regeneration, the model can rarely achieve more than 97-
99% of a goal. Nonetheless, we argue that this is realistic, and campaign phases tend to overlap in modern
air warfare. It’s highly unlikely a commander would stop the campaign because of the inability to kill a

handful of targets.

However, testing has shown setting high thresholds is a useful analysis technique. If a user is
trying to determine which target types and phase goals are influencing the overall solution, setting high

thresholds will uncover them quickly.

We have experimented with solving the phase-goal formulation as a pure mixed-integer program
(MIP) using branch-and-bound techniques. Since different solvers offer different branching strategies,
getting good integer solutions quickly requires experimentation with the solver. Since the first LP
relaxation provides a lower bound on the overall solution, a good indication of whether branch-and-bound
is justified is whether the objective from the first relaxation is substantially different from the objective
after the final pass in the heuristic. In our testing, the differences have been small, with an integrality gaps
of less than 10%. However, branch-and-bound has performed better than the heuristic for some test
problems. As a result, TIME STRIKE contains an option to solve the problem as a MIP, but users should
note that they should be prepared to spend some time “tuning” their solver’s branch-and-bound strategies

to get solutions in a reasonable amount of time.
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APPENDIX C: DERIVATION OF TSORT

TIME STRIKE must account for aircraft attrition within a period. Unfortunately, attrition is a
function of the sortie assignments, so the number of available sorties is a function of the sortie rate, the
attrition rate, and the length of the time period (denoted by s, a, and t respectively). In the formulation,
TSORT ¢ is the upper bound on the number of possible sorties a single aircraft could generate for the

particular combination; the following is a derivation of this bound from a stochastic point of view.

Let TS be the random variable representing the number of sorties flown in a period. We want the

expected value E(TS), which we will find by conditioning on the number of sorties flown.

Suppose the maximum number of sorties than can be flown in a given interval is denoted by the
random variable Y. Then, the conditional probability distribution of TS given Y is a truncated geometric

distribution:

x—l
P(IS =y =y)= {21 -9, Isx<y
( MY =y) { (- a)y_ iy

The expected value E(TS[Y=y) is as follows. For convenience, let g=1-a:

y-1
E(TS|Y = y) = Z:xaq”"l +yg”!

x=1
y-1

d X -1
=ay —q* +yq’
x=ldq

af5)or

Using an identity for the partial sum of a geometric series, we can find a closed-form expression

for the sum:




x-1 - SO
x=1 lﬁq ,
y-1 1- y-1
g* = q _qo +q” 1
x=1 l_q

After taking the derivative and reducing, we have

_qy—l +aqy"]

E(TS|Y = y) = ! .

N 1—(1—a)qy_1
=
1-¢g”
a
_1-(1-a)”
- a

This is the formula used in both TAM and MIXMASTER, with st used in place of y. However, if

y is not an integer, this formula does not hold. To get to the result used in TIME STRIKE, instead assume

that sorties are flown according to a Poisson process with rate s. Then, the distribution of Y is Poisson with

mean st. We use this to uncondition E(TS|Y):

E(TS) = E[E(TS|D)]

D 1_(1_mY
=Zl (1-a) ¥ P(Y = y)
=0 a

i y:O y - y:()

&Y & *e"“(st)"
il Z_,_—_Z(l_a)y __7__

0 e—-st (St))’ e—st © e-—st+ast (St _ast)y

=lz

y=0

y! e—St-HZSt

y=0
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Both sums are Poisson density functions, so both sum to 1. This leaves the final result:

-5t

E(TS) Ly et
a e~st+ast
1_ e*dSt
- a

Converting to the data definitions used in TIME STRIKE, we have

1= o~ AT Ruijips*SRi* NDAYS,
TSORT, 0 =

Note that we can also get this result by using differential equations. Let A, be the fraction of a

single aircraft left at time t. Then,

;. =—4,as
dat

This assumes the aircraft decays as a function of the attrition rate, the sortie rate, and the

proportion of the aircraft remaining. This can be solved using separation of variables:

A, = —asdt

t
.[% = J—asdt

lnlA,’ =-—ast+c

A4 = e—ast+c _ ke—-ast
;= =

At t =0 we have one airplane, so k = 1. Integrating using s to determine the total number of

sorties leads to the result:
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